Monday, December 1, 2014

Advent Programming Contest 2014

Still in the flow from the IEEEXtreme programming challenge? Looking for a daily new programming problems to train your skills?
The Advent Programming Contest 2014, organized by the IEEE Student Branch Klagenfurt will provide a new problem every day from December 1st to December 24th. On Saturdays and Sundays, new problems will appear at 12:00 Central European Time, on workdays at 18:00 CET. You can submit solutions any day until the contest ends on December 26. You can choose to use C, C++, Java, Python or Perl as programming language. The programming tasks can be solved with short programs (typically less than 100 lines of code). Until a solution is correct you can submit your program as often as you want (but please don't spam our server). Your score depends on the number of correct solutions and the time and trials you needed to solve the problem. Winners will be announced after closing of the contest.

The event is open to everyone. If you want to participate, please register at http://mooshak.nes.aau.at/ When you register please indicate if you belong to the group University, Pupils or other.
This is an individuals competition, not a team contest - be fair!
You can also join the contest after 1st December, registration is possible until December 24.

Monday, November 24, 2014

Scalability in Self-Organizing Systems

One of the properties of self-organizing systems is scalability. It means that system keeps its working capabilities even if we remove some of its components or add more of them. In our reseach, we employ different evolutionary algorithms (EAs) to create a self-organizing system. In particular, algorithms like a simple evolutionary algorithm or a two dimensional cellular EA are used  for adjusting the synaptic weights of an neural controller. The best solutions are identified based on simulations of the target application. Typically, the simulation parameters limit the applicability of the solution - there is no guarantee that an evolved solution is adaptable or scalable to situations not specified in the simulation parameters. On the other hand, there are many examples in nature where solutions could be successfully employed in other contexts. We decided to check how our soccer teams, which consist of evolved neural controllers, can scale.

For the FIFA World Cup in Brazil we organized our own tournament between evolved self-organized soccer teams. This is an exciting show - to see how simple agents having only partial information about the environment around them are reaching its goal (score a goal) as a team. Will they be able to play in the same manner if we take the contoller, trained in the simulation with 10 players per team, and increase or decrease the number of players? This question has remained open until today.

In our first scenario, we assume that we invited two soccer teams to show us a fantastic game, but due to some circumstances, only 4 players per teamshow up.
Thus our first experiment can be seen in the video below.
Despite the players being evolved in a context of 11 players on each side, reducing the number of players did not affect the ability of players to show good game.


To check the other extreme, we settled a very dangerous experiment - each team consisting of 40 players! The results were stunning (see video below). These soccer heroes could play as a team even with significantly increased number of players. Unfortunately, they could not play for a long time in this mode: Marco Materazzi headbutted Zinadine Zidane in the chest and shouted "Revenge!"; Luis Suarez bit two players in order to show his perfect teeth; Diego Maradona scored the goal by striking the ball with his hand and this time he was disqualified for this trick. We didn't care about these incidents since we got the results of our experiment:


Links:

Sunday, October 19, 2014

On the Road to your PhD

In the blog Between a rock and a hard place, James Hickey posted a valuable list of tipps for succeeding in your PhD:

1. Learn Latex
2. Use Bibtex
3. Keep your papers organised
4. Keep a formatted list of your own publications and conference abstracts as you go along
5. Always give conference abstracts different titles
6. Keep on top of your emails
7. Manage time
8. Hypothesis testing
9. Keep detailed notes
10. Avoid perfectionism
11. Always give deadlines when you want feedback
12. Source additional funding
13. Write as you go
14. Don’t be scared of your supervisors
15. Log out of Facebook
16. Keep an eye on your budget
17. Diversify yourself
18. Music
19. Get your workstation set up
20. Take notes in meetings
21. Read around your subject
22. Write a literature review
23. Socialise!
24. Sport and/or hobbies
25. Go to conferences and workshops
26. Network
27. Establish a routine
28. Take the lead
29. Practice presenting your work
30. Be prepared for the worse
31. Back up, and back up again
32. Small steps to success
33. Keep on top of admin
34. ENJOY IT!

Being somebody who already has his PhD, I find the list very useful, the title "Things I wish I knew when I started my PhD..." definitely holds some truth, although I accidently did many of the good things mentioned there. See the original post for a detailed explanation of every item!

Sunday, October 12, 2014

Self-organizing Processes in Physical Geography

In this talk, Marco van der Wiel presents some ideas on self-organization and self-organized criticality, and how these relate to physical geography and (explanatory and exploratory) modelling in physical geography.


Loading video...
The talk is in english, you might want to skip the german introduction until 1:40. Video by AAU Campus TV/Egmont Sparouz.

Tuesday, August 19, 2014

DarwinTunes - Evolution of Music by Public Choice

http://game.darwintunes.org/REST/population/1/individual/573a5f10/audio.mp3
The natural world – creatures, plants, infections – is the result of Darwinian evolution by natural selection, i.e., the gradual process of (biological) traits become either more or less common in a population based on the success of the organism carrying these traits. This process, repeated for two billion years, has created the vast diversity of life on earth.
The same process can be also observed in human society where cultural artifacts – words, songs, images, ideas – are constantly remixed and reinterpreted by people. A reinterpretation is an imperfect copy and therefore a “mutation”. Thus, the variety of our culture is the result of a cultural evolution.
In order to examine the underlying mechanism of cultural evolution, Robert M. MacCalluma, Matthias Mauch, Austin Burta, and Armand M. Leroia constructed a Darwinian music engine consisting of a population of short audio loops that sexually reproduce and mutate.
The selection is based on human feedback via a webpage that implements the remixing of tunes as a game. By remixing your tune with others, the other parent gets a score point. Your goal is to make an attractive tune - the more often you get remixed, the more points you have.

In 2010, researchers from the Alpen-Adria-Universität Klagenfurt released a similar system where people could vote for recombinations of music tunes.  

Links:

Sunday, August 10, 2014

Tenure Track Research Professor Position in Big Data at UNAM

The Computer Science Department of the Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS) of the Universidad Nacional Autónoma de México (UNAM) has a open call for a tenure-track research professor in big data.

Located in the heart of the UNAM's Ciudad Universitaria, a UNESCO World Heritage site, the IIMAS has been the leader in computer science in Mexico since the first computer in the country was acquired by UNAM. Researchers at UNAM have a privileged position for several reasons. UNAM is the highest ranked spanish speaking higher education institution in the world and produces half of the research in Mexico and is the largest in the continent (300K+ students). Professors in faculties do more teaching than research, while researchers in institutes (such as IIMAS) do more research than teaching (about 48 hours per year, usually to the best graduate students in the country. Groups of more than five students get a teaching assistant). Students in most graduate programs at UNAM receive automatically a scholarship, and there is travel budget for researchers, minimizing the grant writing load. There are several grant calls with high acceptance rates. There are also two postdoctoral fellowship calls per year internal to UNAM. High performing researchers can reach tenure in less than five years.

Requirements for this call are:

  1. To be less than 39 (women) or 37 (men) years old.
  2. To have a PhD degree in computer science, statistics, or related areas from a renowned institution.
  3. To have published high quality research papers related to big data.
  4. To have teaching skills at undergraduate and graduate levels.
  5. To have abilities to direct undergraduate and graduate theses.
  6. To be able to collaborate in multidisciplinary research projects.
  7. To fulfill the norms described at http://dgapa.unam.mx/html/sija/sija.html
Interested candidates should send the following documentation to Dr. Ricardo Berlanga (berlanga "at" unam.mx), Academic Secretary of IIMAS before October 7th, 2014:
  1. Application request (in Spanish).
  2. Updated Curriculum Vitae, including publication list (in Spanish).
  3. Copy of PhD degree.
  4. Copy of publications.
  5. At least two references with email included.
  6. A work plan which includes research and teaching prospects for the next three years (in Spanish.
Selected candidates will be invited to give an open talk or videoconference at IIMAS. An ad hoc commission will make a final decision.
More information can be requested to:
Dr. Carlos Gershenson
Head of Computer Science Department, IIMAS, UNAM
cgg "at" unam.mx

Friday, July 4, 2014

On Evolving Self-organizing Technical Systems

Moofushi Kandu fish (Image by Bruno
de Giusti under CC-BY-SA-2.5)
Individual swarm fish behave according to simple rules, which make the overall swarm an efficient entitiy for hunting and avoiding predators. Despite the simple local rules, a school of fish is a working, intelligent system. István Fehervari examined in his doctoral thesis how this behavior can be transferred to technical systems. The result is a tool making it easier to develop self-organizing systems.
Sometimes, it is possible to mimic natural self-organizing behavior for a technical system. At other times, you might not have access to such a template. "If there is no natural system, which we can copy, we have to develop it on our own," says István Fehérvári from the Institute of Networked and Embedded Systems at Alpen-Adria-Universität Klagenfurt. Fehérvári further explains: "This is very difficult because the behavior of a complex system is difficult to predict and the definition of the proper interaction behaviors is hard. Any change in the system creates an effect, often with unwanted consequences. This is why we apply an artificial evolution approach to evolve the local interaction rules,"

To make this approach feasible, the FREVO software has been developed, a tool that helps to apply the evolutionary approach in a unified way to different problem statements and settings. "FREVO provides a one-stop shop, with all the necessary steps for designing a self-organized algorithm for a given problem." says Fehérvári who devoted a major part of his thesis work to design and implement FREVO.  Now the tool is available to other researchers for further experiments and investigations. FREVO is an open-source program in Java that can be freely downloaded at frevo.sourceforge.net

Further readings and downloads: