Abstract:
This talk presents a vision about the upcoming breakthrough in artificial evolution: animate artefacts that (self-)reproduce in physical spaces. In other words, we witness the “Evolution of Things”, rather than just the evolution of digital objects, leading to a new field of Embodied Artificial Evolution. After presenting this vision some of the technical challenges are elaborated and related to the main algorithmic/technical requirements to the current know-how in evolutionary computing. Finally, Prof. Eiben will speculate about possible applications, their societal impacts, and argue that these developments will radically change our lives.
For those who cannot attend or want to warm up on the topic, we recommend Eiben's TED talk "
Bio:
A.E. Eiben is a professor of Computational Intelligence on the VU University Amsterdam and Visiting Professor in the Department of Electronics of the University of York, UK. He is one of the European early birds of Evolutionary Computing; his first EC paper dates back to 1989 and he co-authored the first comprehensive book on the subject. He has been organizing committee member of practically all major international evolutionary computing conferences and editorial board member of related international journals. He have also coordinated or participated in several EU research projects. Prominent themes in his work include multi-parent recombination methods, evolutionary constraint handling, evolutionary art, artificial life, and evolutionary robotics. Furthermore, he is concerned with methodological issues, especially the design and calibration of evolutionary algorithms (parameter tuning off-line as well as parameter control on-line). Lately he became interested in artificial evolutionary systems that are physically embodied in real time and real space. This goes far beyond conventional evolutionary computing in digital spaces and implies great new opportunities and challenges – see his TEDx talk and a journal paper on the vision, and the The Triangle of Life framework for a possible implementation in robotic systems that can self-reproduce. On the long term, a broad range of possible “incarnations” can emerge and form a radically new way of engineering. Furthermore, they can serve as an apparatus to investigate deep scientific questions about evolution in a new substrate, different from carbon-based life as we know it.
No comments:
Post a Comment