Wednesday, September 9, 2020

Swarm Intelligence and Cyber-Physical Systems


Swarm Intelligence (SI) is a popular multi-agent framework that has been originally inspired by swarm behaviors observed in natural systems, such as ant and bee colonies. In a system designed after swarm intelligence, each agent acts autonomously, reacts on dynamic inputs, and, implicitly or explicitly, works collaboratively with other swarm members without a central control. The system as a whole is expected to exhibit global patterns and behaviors.

When is it advantageous to use a Swarm approach?
The scaling principle depicts a range where a swarm
outperforms a linear system of the same size

Although well-designed swarms can show advantages in adaptability, robustness, and scalability, it must be noted that SI system have not really found their way from lab demonstrations to real-world applications, so far. This is particularly true for embodied SI, where the agents are physical entities, such as in swarm robotics scenarios.

In the paper 

Melanie Schranz, Gianni di Caro, Thomas Schmickl, Wilfried Elmenreich, Farshad Arvin, Ahmet Sekercioglu, and Micha Sende. Swarm Intelligence and Cyber-Physical Systems: Concepts, challenges and future trends. Swarm and Evolutionary Computation, 60, 2020. (doi:10.1016/j.swevo.2020.100762)

we start from these observations, outline different definitions and characterizations, and then discuss present challenges in the perspective of future use of swarm intelligence. These include application ideas, research topics, and new sources of inspiration from biology, physics, and human cognition. To motivate future applications of swarms, we make use of the notion of cyber-physical systems (CPS). CPSs are a way to encompass the large spectrum of technologies including robotics, internet of things (IoT), Systems on Chip (SoC), embedded systems, and so on. Thereby, we give concrete examples for visionary applications and their challenges representing the physical embodiment of swarm intelligence in

  • autonomous driving and smart traffic,
  • emergency response,
  • environmental monitoring,
  • electric energy grids,
  • space missions,
  • medical applications,
  • and human networks.

In the future, swarm-based applications will play an important role when there is not enough information to solve the problem in a centralized way, when there are time constraints which do not allow to find an analytical solution, and when the operation needs to be performed in a dynamically changing environment. With an increasing complexity in upcoming applications this will mean that SI will be applied to solve a significant part of ubiquitous complex problems.

No comments:

Post a Comment